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structure 
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Received 27 July 1990 

Abstract. When gases or liquids are adsorbed in narrow pores or capillaries their properties 
aresignificantlydifferentfrom thoseinabulkphase. Thisarticle reviewsrecentdevelopments 
in the statistical theory and computer simulation of simple fluids confined in model pores, 
emphasizing the microscopic structure and phase equilibria. The structure reflects the 
packing of atoms or molecules in confining geometries while the phase behaviour reflects 
the presence of surface and bulk contributions to the fluid’s free energy. Confinement shifts 
first-order transitions, such as condensation or freezing, away from their location in bulk; it 
also alters the location and nature of the bulk critical point reducing the effective dimen- 
sionality. Sometimes surface phase transitions such as layering and prewetting compete with 
shifted bulk transitions giving rise to rich phase diagrams. The extent to which the theorists’ 
results for fluids in single idealized pores might be relevant for solvation force studies probing 
liquids between crossed mica cylinders and for gas adsorption studies in real mesoporous 
solids such as VYCOR i s  mentioned briefly. 

1. Introduction 

The phenomenon of the rise, against gravity, of a liquid in a vertical capillary is one of 
the most striking manifestations of surface tension, providing direct evidence for the 
existence of attractive intermolecular forces [ 11. The successful understanding of capil- 
lary rise, due to Young and Laplace, was a triumph of early 19th century physics. 
However, the macroscopic concepts of surface tension, contact angle and pressure 
difference across a curved meniscus, which form the basis of the classical theory of 
capillarity, are of limited applicability once the dimensions of the capillary cannot be 
regarded as macroscopic. Microscopic treatments are necessary when a significant 
fraction of the volume of the capillary is occupied by fluid whose local density p(r)  is, as 
a result of the confining effects of the walls, different from that in bulk. Such situations 
arise for fluids adsorbed in porous structures whose pore sizes are of the order of several 
molecular diameters, e.g. in zeolites, VYCOR glass, carbon powders and clays, where 
typical sizes may lie in the range 10-200 A. 

Despite the importance of fluids in porous media for several branches of surface 
chemistry and physics, fundamental understanding of gases and liquids confined in very 
narrow pores did not begin to emerge until quite recently. Progress had to await the 
advances made during the last decade or so in the statistical mechanical theory and 
computer simulation of fluid interfaces. Techniques introduced for liquid-gas interfaces 
[ l ]  and for adsorption at solid substrates [2] have been extended to the problem of fluids 
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in idealized, model pores. The main thrust of recent research deals with the following 
types of questions: (i) To what extent can notions of bulk phase equilibria be employed 
in confined systems? For example, do the condensation and freezing transitions persist 
in narrow capillaries? Are there well-defined critical points for a confined fluid? Do new 
phase transitions resulting from the interplay between bulk and surface ordering occur 
and if so, what is their nature? (ii) What is the microscopic structure of a confined gas or 
liquid and how does this depend upon the geometry of the pore and the nature of the 
confining substrate? When does quasi-two- or one-dimensional ordering occur? This is 
equivalent to asking: what are the effects of packing constraints and substrate forces on 
the statistical arrangements of molecules in the fluid? (iii) How are transport properties 
such as diffusion and viscosity affected by confinement? Since the answers to these 
questions cannot be obtained easily from experiment, it is not surprising that the 
theoretician and the computer simulator have had free rein. Nevertheless, one should 
emphasize that one of the ultimate aims of such studies is to provide fundamental 
theoretical input for many practical problems such as the interpretation of gas adsorption 
measurements for porous substrates [3], processes involving fluid flow in porous media 
and interpreting solvation force measurements for liquids contained between crossed 
mica cylinders. This last technique is growing in importance as it provides quantitative 
information about liquid mediated forces between two substrates separated by micro- 
scopic distances [4]. 

The present article attempts to give the flavour of some of the recent work in this 
field. It is not intended to be comprehensive. Emphasis is placed on phase equilibria, 
microscopic structure and adsorption phenomena; the choice reflects the author’s own 
interests. Transport properties, in particular, warrant a separate discussion [ 5 , 6 ] .  

2. Model pores and model fluids 

2.1. Confining geometries 

Although spherical cavities have been considered as a crude model for certain zeolites 
[7] ,  two main geometries are favoured: slits and cylinders. 

In the former the fluid is confined between two parallel solid substrates which are of 
(infinite) area A ,  but which are separated by a finite distance L-see figure 1. For the 
open-cylinder geometry the interior radius R, is finite but the length becomes infinite. 
One imagines a reservoir of fluid in contact with either pore so that fluid molecules can 
be adsorbed on the interior substrate of the cylinder and on the two interior substrates 
of the slit. The chemical potential p and temperature T of the confined fluid are fixed by 
the reservoir. Increasing p ,  or the pressure of the fluid in the reservoir, will usually lead 
to an increase in the number of fluid molecules adsorbed. Provided the substrates can 
be regarded as rigid (homogeneous and inert) on suitable time and energy scales, these 
can be viewed as walls that merely exert an external potential V(r)  on fluid molecules. 
The basic statistical mechanical problem then reduces to one of determining the equi- 
librium and, possibly, the non-equilibrium properties of a fluid in the presence of 
confining external potentials. The spatial inhomgeneity of the averagefluid density p( r )  
is governed by that of the confining potential. 

2.2. Continuum models 

Most attention has been focussed on simple fluids, e.g. rare gases or small, non-polar 
molecules. These are often modelled by a Lennard-Jones 12-6 fluid-fluid intermolecular 
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Figure 1. System of two adsorbing substrates of 
surface area A ,  repellingwith force Af. V ( z )  is the 
confining potential experienced by a molecule in 
the fluid. 

pair potential QLJ(r) = 4&LJ[((TLJ/r)12 - (aLJ/r)6], with diameter (TLJ and well-depth ELJ 

chosen to mimic a particular fluid. The substrate potential is chosen to be as simple as 
possible, whilst still retaining both attractive and repulsive components for the fluid 
molecules. In most calculations the variation of the potential parallel to the substrate, 
arising from the ‘corrugations’ associated with the crystalline arrangement of substrate 
molecules, is ignored so that V(r)  + V ( z )  and p( r )  + p(z)  for slits whilst V(r)  + V ( R )  
and p ( r )  + p(R) for a cylinder; only variation normal to the now structureless wall is 
included. The neglect of corrugations can be significant, especially for the structure of 
the first adsorbed monolayer and for freezing of the layers [8,9]. Moreover, in the limit 
where the pore size corresponds to a few (fluid) molecular diameters, specific adsorption 
sites and specific packing constraints will determine the details of the density variation 
and control the nature of the adsorption. Nevertheless, comparison of simulation results 
for supercritical liquids confined in corrugated and uncorrugated (structureless) slits 
[lo] show that the latter often provide a realistic description of adsorption, even for L 
as small as 2.5 molecular diameters. 

A well-studied model is the 9-3 potential V s ( z )  = ~ E , [ & ( ( T ~ / Z ) ~  - ((T,,,/z)~] obtained 
by integrating the Lennard-Jones 12-6 wall-molecule-fluid-molecule pair potential over 
the transverse ( x ,  y )  directions of a single wall, assuming a constant wall density n,. 
Increasing the strength parameter, E,+,, which is proportional to n,, increases wall-fluid 
attraction, favouring increased adsorption. a,+, measures the range of wall-fluid repulsive 
forces. For the slit with identical walls [ll] V ( z )  = V s ( z )  + V s ( L  - 2) (see figure l), 
while for the cylinder the potential V ( R )  is more complicated [12, 131. Even simpler 
potentials are sometimes employed. For example, purely repulsive hard-sphere fluids 
and hard walls have been considered. While such idealized models are not intended to 
mimic any real confined fluid, rigorous results for certain properties can sometimes be 
obtained and these provide insight into fundamental issues [14]. 

2.3. Lattice models 

Lattice gas models of confined fluids can be traced back to papers by Hill [15] and 
Nicholson [16]. In slit geometry the space between the parallel walls is filled by a lattice, 
simple-cubic say, with L = Nu and A = M 2 a 2 :  a is the lattice spacing. The number of 
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layers normal to the walls, N ,  is finite while M-,  33, Sites on the lattice may or may 
not be occupied by particles. In the simplest (Ising) version only nearest-neighbour 
interactions are included so that ’bonds’ of energy --E ( E  > 0) occur when neighbouring 
sites are occupied. The properties of the bulk (Ising) lattice gas, when no surfaces are 
present, are very well known. Below the critical temperature, T,,,, where kBTc,=/& = 
1.1279 for simple cubic, a sp~rsely occupied ‘gas’ phase coexists with a densely occupied 
‘liquid’ phase at chemical potential pSat = - 3 ~ ,  independent of T. The corresponding 
average occupancy, or density, p against T phase diagram is symmetric about p = 
pc = t .  Although such a coexistence curve is a crude representation of that of a real fluid, 
it does contain the essential physical features. In addition, the critical point behaviour 
of real fluids is known to lie in the three-dimensional Ising universality class [17], so the 
lattice model does incorporate the correct critical exponents for bulk fluids. 

For the confined lattice gas the Hamiltonian is 
N 

where the occupancy variable s,k = 1 if the kth site in the jth layer is occupied and is zero 
if this is empty. The first term in (1) is a sum over all nearest-neighbour pairs of sites 
while in the second term V, = V,? + Vh+l- ,  is the total potential experienced by a 
particle in layer j due to the walls. The single-wall potential V;’ = Vs(z,)  is assumed 
independent of x and y ;  it may take the integrated 9-3 or a closely related form. 
Sometimes free-edge boundary conditions are employed so that V,? = 0 for all j ,  cor- 
responding to a free finite film, with no modifications due to wall effects. Alternatively, 
extremely localized surface fields can be introduced which couple only to particles in the 
surface layers j = 1 and j = N :  Vi” = VI a,, . Such a prescription is borrowed from the 
study of magnetic films where a localized surface magnetic field h acting only on spins 
in the surface layers can be envisaged. 

The advantage of lattice models of this type is that their equilibrium properties are 
amenable to extremely detailed investigation. In particular, extensive Monte Carlo 
simulations can be performed for system sizes that are not yet feasible for continuum 
fluids. The ability to study large systems is especially important when attempting to 
ascertain details of phase diagrams and the nature of any criticality that might occur. It 
is expected that phase transitions and adsorption phenomena found in lattice models 
should have rather direct counterparts in the continuum case. This expectation is con- 
firmed for most surface phase transitions, especially wetting phenomena, at single 
substrates-see the reviews [18, 191 and there is growing evidence that it is correct for 
confinedfluids. Of course, the Ising version of the lattice gas model does not incorporate a 
crystalline phase so it cannot be used to investigate possible capillary freezing transitions. 
Lattice models that do incorporate three bulk phases, i.e. a triple point, do exist, but 
these have not been applied systematically to confined systems. The other failing of the 
lattice models is that they cannot provide a realistic description of the effects of packing 
constraints on the density profiles of a real fluid confined in a very narrow pore; the form 
of the profile depends on whether or not the width of the slit or radius of the cylinder is 
commensurate with an integral number of (fluid) molecular diameters [20]. By fixing 
particles on lattice sites, imposed short-ranged correlations are very different from thsoe 
that would occur in the real fluid. 

2.4.  Simulation and approximate theories 
The simulation techniques are fairly standard. Monte Carlo has been implemented [21], 
using periodic boundary conditions in the x and y directions, for lattices with 32’ or 642 
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sites per layer and N up to 61 layers. The average occupancy of each layer and the total 
susceptibility is monitored along with the average energy. Thermodynamic integrations 
along reversible paths yield the grand potential B for any phases that are present. Grand 
canonical Monte Carlo (GCMC) has been used for Lennard-Jones fluids in cylinders [22], 
with periodic boundary conditions along the cylinder axis z ,  and in slits [8, 231. t While 
this technique allows one to calculate Q, i.e. it provides a means of locating phase 
transitions, it does not allow the direct observation of two phases, separated by a 
meniscus, in the same pore. Such observations can be made using molecular dynamics 
simulations in the canonical ensemble and these results [24] have provided much insight 
into the nature of adsorption hysteresis in cylindrical pores. Total density profiles p(R, z )  
can be computed [24,2.5]. 

Theoretical work for lattice models is based upon a simple mean-field approximation 
[26] for the grand potential function G({p,}) which upon minimization yields estimates 
of the average occupancy profile {p,} and of Q.  Approximate density functional theories 
[ 141 have proved extremely powerful for describing the structure, i.e. the density profile 
p(r),  and for determining the phase equilibria of confined continuum fluids. One con- 
siders a functional 

Q"b1 = m1 + J^ drp(r)V(r) - P J^ drp(r)  

which upon minimization provides a variational estimate for the grand potential of the 
fluid confined by the external potential V(r ) .  %[p] is the intrinsic Helmholtz free-energy 
functional [14]; it contains an ideal gas term in addition to all fluid-fluid contributions 
to the free energy. Since the latter are not known exactly for any realistic fluid, approxi- 
mations must be made. Attractive forces are usually treated in mean-field fashion while 
repulsive forces are modelled by hard spheres. The simplest approximation for the hard- 
sphere free-energy functional is %&] = J d r  f h s ( p ( r ) ) ,  where f h s ( p )  is the free-energy 
density of a uniform hard-sphere fluid of density p ,  which is known accurately. This 
local density approximation constitutes a zeroth-order, or van der Waals, theory for 
inhomogeneous fluids, which has shed new light on a variety of interfacial problems [14, 
18, 191. It accounts for phase transitions, albeit at the mean-field level, but fails to 
describe the short-ranged correlations, arising from packing effects, that produce oscil- 
lations in the density profile for liquids near walls. In order to account for structure in 
p(r )  a non-local theory is required for %&). Various theories exist [14] but the version 
that has been employed extensively for confined fluids is that due to Tarazona [27]. 
When tested against simulation this non-local theory has been found to be accurate, 
both for fluid structure and for phase equilibria [lo,  2.51. Integral equation techniques 
for inhomogeneous fluids have also been applied to confined systems. These have often 
proved accurate for the structure but many have difficulties in accounting for phase 
transitions (141. Important recent work in this area can be found in [61,62]. 

3. Thermodynamics of adsorption for a confined fluid 

3.1. Adsorption and solvation force 

Before describing the results of calculations for the models introduced above, it is 
instructive to consider the thermodynamics of confined fluids. The natural choice of 

t A great number of Monte Carlo and molecular dynamics calculations of the density profile, adsorption and 
solvation force have been carried out for simple fluids in slits. We do not review this work in any detail. 
References to early papers can be found in [14,23,25]. 
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thermodynamic potential appropriate to an open system of the type shown in figure 1 is 
the grand potential Q = U - TS - pN, where U is the total internal energy, S the total 
entropy and N the total number of fluid molecules or particles in the lattice model. 
Whereas in a bulk fluid Q = -pV, where p is the bulk pressure and V is the volume 
occupied by the fluid, Q for a confined fluid has an extra (surface) contribution pro- 
portional to the total surface area. For the slit, an increment in grand potential is given 
by 

dQ = -pdV - S d T  - N d p  i- 2ydA - Af dL. (2) 

The standard (bulk) terms are supplemented by a surface work term: 2yis the total wall- 
fluid interfacial tension, and a term that represents the work done when the wall 
separation L is increased by an amount dL. It is supposed that the force Af is applied 
externally at both walls as in figure 1 .  The presence of two extra thermodynamic fields 
A and L has significant repercussions for phase equilibria; these extra fields may augment 
the Gibbs phase rule appropriate to a one-component bulk fluid leading to a rich phase 
diagram [28]. By introducing suitable dividing surfaces at each wall and defining surface 
excess functions, the Gibbs adsorption equation for a confined fluid can be derived [28]: 

2 d y +  2 s d T +  I'dp + f d L  = 0 (3) 

where r = -2(d y / d , ~ ) ~ , ~  = ( N  - &)/A is the adsorption, i.e. the excess number of 
molecules per unit area measured with respect to the bulk fluid at fixed (p ,  T). s is the 
excess entropy per unit area. In the limit L+ =, T ( L )  + rl  + Tz: the sum of the 
adsorptions at single walls. Similarly 2y(L)  + yI + y2: the sum of the individual wall- 
fluid tensions. f is also an excess quantity; it can be expressed as a pressure difference: 

Recall that p refers to the bulk fluid in the reservoir. Only in the limit L -+ M does 
f ( L )  + 0. It is conventional to divide f ( L )  into two contributions: (i) f,,(L) arising from 
the direct intermolecular forces between the material of the two walls or plates, which 
should be independent of ( , U ,  T), and (ii) a remainder, usually called the solvation force, 
that is associated with plate-fluid and fluid-fluid forces. This second term is the one 
relevant for fluid phase equilibria. Measurements of the solvation force have been made 
for a variety of liquids between two crossed mica cylinders using the technique pioneered 
by Israelachvili and co-workers [4]. Although the geometry is not that of parallel plates- 
it is equivalent to that of a sphere, with large radius of curvature, approaching a flat 
surface-the force that is measured has the same thermodynamic interpretation as that 
given above for f ( L ) .  Since the experiments claim to measure the solvation force for 
separations as small as 10 A, with a resolution of about 1 A, this technique constitutes 
an extremely important surface probe. A recent book [29] describes the work of the 
Russian school in this field. 

It is clear that any fundamental theory for the force requires, as input, y ( L ) ,  i.e. 
some means of determining the excess free energy of the confined fluid from first 
principles. One feature of the solvation force measurements that has attracted much 
interest is the observation of oscillations for small plate separations [4,29,30], the peaks 
being separated by about one (fluid) molecular diameter. The same packing effects 
which give rise to highly structured density profiles p ( t )  produce oscillatory f (L) .  This 
is most clearly illustrated for the case of a liquid confined by two hard walls. For this 
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idealized situation, the solvation force is given by the exact statistical mechanical formula 
[31,141 

where pL(O+) is the liquid density at contact with each wall in the confined system. p,(O+) 
is the corresponding quantity for infinite wall separation. When L - few molecular 
diameters pL(O+) reflects the packing of liquid molecules. If L 2 an integral number of 
diameters pL(O+) is much larger than the unconfined density p,(O+) and f is large and 
positive. When L is out of registry with the packing pL(O+) < p2(O+) andfis  negative. 
Oscillatoryf(L) then results. Softening the wall-fluid repulsive potential does not change 
the essential physics of this argument [14]. 

3.2. Characterization of phase transitions 

We are now in a position to state how possible phase equilibria should be characterized 
for a confined fluid. Suppose two (confined) phases CY and /3 coexist for certain values of 
p, T and L. This requires R, = R, or, alternatively, y, = yp since the bulk contribution 
to R is the same for each phase. Effecting a change in p, T and L at fixed wall area A in 
such a way that CY and /3 remain in equilibrium (dy, = dy,) gives from (3) 

2(s, - s p )  d T  + (r, - r,) dp + cf, - fp)  dL = 0. (4) 

The shape of the a-/3 coexistence surface is determined by three Clapeyron equations 
[281, e.g. 

( d L / d p ) T  = -Ar/Af ( 5 )  

gives the slope of the coexistence curve at fixed Tin terms of the difference in adsorption 
AF = I', - T, between the two phases and the difference Af = fn - fp between the 
solvation forces. If a and /3 both have the same symmetry (both are fluids, say) AI- is a 
natural order parameter; note the analogy with the bulk liquid-gas transition where 
Ap = pl - pg is the order parameter [17]. This implies that a critical point of a confined 
fluid should occur when AI' vanishes at a certain ( T ,  pc, Lc). The precise condition is 

( 4 w ) > , T . L ,  = ( a 2 P / d I ' * ) > , T , L c  = 0 (d3p/dr3);,T,Lc 3 0. (6) 

Rather than varying L and p at fixed T we might fix L and vary p and T. Conditions, 
analogous to (6), determine the location ( P ~ , ~ ,  TC,J of the 'capillary critical point' [28]. 
In general, this point will be different from the bulk liquid-gas critical point (pC,%, Tc,,). 
The analogy with bulk can be taken further by noticing that r(p) and -2y(,u) play the 
role of the bulk density pb(p) and pressurep(p) respectively (recall that p b  = ( d ~ / d p ) ~ ) .  
Thus in a classical, mean-field theory we expect r ( p )  to develop a loop for T < Tc.L as 
shown in figure 2(a). On increasing the temperature Tthe loop shrinks and the jump AI' 
at the first-order transition decreases. Eventually at Tc,L the jump vanishes and (dr/ap) 
diverges as in figure 2(b). For T > Tc,L,  I' usually increases monotonically with p (figure 
2(c)). But Af is just as good an order parameter as AI' and the conditions for capillary 
criticality may also be expressed in terms off. The classical picture of criticality that is 
described in figure 2 neglects the effects of critical fluctuations and we shall see that, 
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because of reduced dimensionality of the fluid, these effects are very important in 
confined fluids and the classical description becomes inaccurate near the critical point. 

4. Capillary condensation: the shifted bulk transition 

4.1. Macroscopic treatment 

The best known example of a phase transition for a confined fluid is that of capillary 
condensation: the phenomenon whereby a gas at chemical potential p < psat condenses 
to a dense, liquid-like phase that fills the pore. Capillary condensation has long been 
invoked [32]  in the interpretation of the gas adsorption isotherms measured for meso- 
porous solids [ 3 ] .  However, the precise nature of this phenomenon has remained some- 
what obscure until recently. In the limit of large slit width L ,  or cylinder radius R,, 
the undersaturation at which condensation occurs can be obtained using macroscopic 
arguments. Then phase /3 corresponds to a dilute gas while a corresponds to the con- 
densing ‘liquid’ phase. Each confined phase has a density profile p(z)  that is almost 
constant throughout the slit so that the grand potentials of the fluid phases within the 
slit are the sum of bulk and surface contributions: 

Q p  =z -PAL -I- 2yw@ (7a) 

R ,  -p:AL + 2yw&. (7b) 

and 

p is the pressure of bulk p (in the reservoir) while p,’ is the pressure of the a phase at 
the same chemical potential p .  Such a (liquid) phase is metastable in bulk and is 
associated with a density p i  obtained by considering a van der Waals loop for p(p) [28 ] .  
ywn and ywp are the single wall interfacial tensions evaluated at psat( T) .  Coexistence of 
a and /3 occurs when Q, = Qp, i.e. when 

P - P,’ = ( 2 / L )  ( Y w p  - YW,) = (2/L)Yap cos 8. (8) 
In the last step we have used Young’s equation ywa = yw, + yap cos 8 for the contact 
angle 8; yep is the tension of the a-p interface at bulk a-p (liquid-gas) coexistence. 
Note that (8) is equivalent to Laplace’s result for the pressure difference across the 
cylindrical meniscus that would develop between liquid and gas in a vertical slit; the 
mean radius of curvature is L/cos 8. A more convenient form of the result is obtained 
by expanding p(p) about p,’(p) about psat. Condensation occurs when 

AP = I s a t  - P = 2Ywp cos e/%, - Pp> (9) 
where p, and pp are the densities of the two coexisting bulk phases. When the gas is 
close to ideal Ap - k,Tln(psa,/p) and (9) reduces to the so-called Kelvin equation for 
the condensation pressure [ 3 ] .  If the walls favour a (liquid), so that ywn < ywg and 
cos 8 > 0, condensation occurs for p < pSat and the adsorption r jumps from a small 
value characteristic of gas adsorption by an amount [28] AT - (pm - pp)L,  while the 
solvation force falls by an amount Af - -2yap cos 8 / L  consistent with (5). The physical 
picture of the transition is one in which the metastable &-phase is stabilized by surface 
tension; the fact that there are bulk and surface contributions to the grand potential 
gives 52, < Qp for non-zero Ap. If the walls favour gas, so that cos 8 < 0, equation (9) 
predicts capillary evaporation of the liquid for some p > psat. This phenomenon is 
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Figure2. Schematicadsorptionisotherms for aslit 
of fixed width L. ( a )  T < Tc,L. r(p) exhibits a loop 
(brokencurve) and the location of the equilibrium 
transition pco is given by an equal-area construc- 
tion. (b )  T = Tc,L. r has infinite slope at p c .  (c) 
T >  7,C.L. 
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Figure 3. Adsorption isotherms for a lattice gas 
model with TIT,,, = 0.9 and various numbers of 
layers N .  The vertical portions represent the jump 
AT associated with capillary condensation. Note 
the existence of metastable ‘gas’ and ‘liquid’ 
branches. sat (=p/p,dJ measures the degree of 
undersaturation of the bulk gas-see [26 ] .  

relevant for mercury porisometry studies of porous solids [3]. Equation (9) should be 
the exact asymptotic (L 3 x )  law for the shift of any bulk first-order transition, provided 
the interfacial tensions and contact angle are identified properly. For cylindrical 
geometry L is replaced by R, [ 121. Sometimes it is more appropriate to focus on the shift 
of the bulk transition arising from confinement at fixed pressure rather than at fixed 
temperature. It is straightforward [28] to show that the resulting shift in the transition 
temperature is 

AT E T - Tb = 2Tb( ywp - Ywn)/L/Pb 

where 1 is the latent heat per mole and Tb is the temperature of the bulk transition. P b  is 
the density of the bulk phase with the lower interfacial tension. The result is equivalent 
to the standard formula for the shift in transition temperature arising from the curvature 
of the interface between the two coexisting phases. It has been invoked successfully, 
with L replaced by some mean pore radius, to explain the reduction of the freezing 
temperature measured for various liquids confined in VYCOR glass and in other porous 
solids [28, 331. In this case ywl < yws where s refers to the crystalline phase. The same 
equation has been used [34-361 to interpret the shift of the isotropic-nematic transition 
in liquid crystal films. It can be generalized [28] to a phase-separating binary mixture. 
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(0) ( C) (d 
Figure 4. Snapshots of atomic configurations generated in GCMC simulations [23] of a Lenn- 
ard-Jonesfluidinaslitat T =  O.71Tc,,. (a)‘gas’atp/p,,, = 0.90,L* = L/u,, = 20. (b)‘liquid’ 
at ~ / p , ~ ,  = 0.95, L* = 20. (c) ‘gas’ at p/p, , , ,  = 0.516, L* = 10. ( d )  ‘liquid‘ atp/p,,, = 0.516, 
L* = 10. 

Then the shift in concentration, at fixed temperature and pressure, is proportional to 
ywp - ywa where a and /3 now refer to phases rich in species 2 and 1, respectively. How 
the phase separation curve is influenced by confinement depends on which of the two 
phases is preferred by the walls, i.e. on the wetting behaviour. 

To what extent do these limiting laws remain valid for smaller pores? The regime of 
validity can be ascertained by comparing the results of microscopic theories, or computer 
simulations, with those of the limiting formulae, calculating the thermodynamic quan- 
tities ywa and ywp etc from the same theory. This is of some practical importance for gas 
adsorption. The Kelvin equation is often used [3] to infer a pore radius from low 
temperature isotherms, where the rapid increase in r is identified with capillary con- 
densation, even for pores with R ,  - few molecular diameters. 

4.2 .  Results of microscopic treatments 

Theory and simulation have concentrated on the liquid-gas transition for pure fluids 
and for binary Lennard-Jones mixtures [37,38] in model pores. 

Figure 3 shows the results of calculations of the adsorption r for the lattice gas model 
described by (l), with a hcp lattice. These particular results [26] are based on the mean- 
field approximation, but Monte Carlo results [21] for the same model exhibit similar 
features. The substrates are modelled by the 9-3 potential with E ,  chosen to represent 
argon adsorbed on solid xenon. As the number of layers Nin the slit increases, capillary 
condensation occurs at increasing values of p/p, , ,  and the jump AT is roughly pro- 
portional to N for the larger systems. For N 3 12 the adsorption on the gas branch is 
independent of N .  The Kelvin equation overestimates the condensation pressure even 
for the largest slit, N = 50, where it is in error by about 40%. This type of discrepancy, 
although less pronounced at lower temperatures, is found for both lattice and continuum 
models in theory [ll-131 and in simulation [21, 22, 251, when liquid wets the walls 
completely, i.e. 8 = 0. Under these circumstances thick, liquid-like films are adsorbed on 
the walls when the undersaturation is small. Figure 4 shows ‘snapshots’ of configurations 
from GCMC simulations [23] of capillary condensation for a Lennard-Jones model of 
(spherical) nitrogen between two graphite substrates modelled by the 9-3 potential. For 
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L* = 20 the first three or four layers are essentially the same in both phases. Similarly 
for L* = 10 the first two layers have the same structure in both phases. At  a single wall 
( L  = x )  the thickness t of the adsorbed wetting film increases as (pSat - p)-1/3 for walls 
exerting van der Waals forces. The presence of such films in the slit leads to a modified 
Kelvin equation valid for large L:  

AP = 2Ya& - 3t)(Pa - Pp).  

Here t depends on Ap and, hence, L. That L should be replaced by L - 3t rather than 
L - 2t, as would be suggested by a naive balancing of bulk and surface energies, was 
recognized first by Derjaguin [39] in 1940 and attests to the importance of long-ranged 
van der Waals forces in wetting phenomena. Only for exponential or finite-ranged forces 
is L - 2t appropriate [39, 401. 

The modified Kelvin equation does provide a somewhat more accurate estimation 
of the condensation pressure for large slits [21]. In a partial wetting situation, 8 > 0, 
where thick films are not present, the Kelvin equation remains accurate down to sur- 
prisingly small pore sizes. Mean-field calculations [26] for lattice models and density 
functional results for continuum fluids [20] indicate that the asymptotic formula remains 
very reliable for L or R, 3 6 molecular diameters or lattice spacings. It is still not clear 
why a formula based on macroscopic arguments should remain valid at microscopic 
dimensions; the density profiles of the confined liquid exhibit pronounced structure over 
the total pore volume [20]. 

Of course the Kelvin equation cannot describe other aspects of the phase equilibria. 
Reducing the slit width L leads to capillary criticality (vanishing Ar) ,  provided the 
temperature is above the two-dimensional critical temperature T,. I .  The N = 4 isotherm 
in figure 3 is slightly supercritical. The loss of phase coexistence at small L and R, has 
been observed in many density functional calculations [ 11-13] and computer simulations 
[22, 251 of continuum fluids. The variable 1/L, or l /Rc, plays a similar role to the 
temperature in inducing criticality of the confined fluid so that one finds a line of critical 
points [11, 261 ( I , . ~ ,  Tc,L) ,  with Tc,L < T,,,, extending into the bulk gas phase when 
cos 6’ > 0 or into the bulk liquid phase when cos 8 < 0. 

For very narrow slits two-dimensional-like phase equilibria are found. In the lattice 
model, coexistence of strictly two-dimensional ‘liquid’ and ‘gas’ phases occurs for a 
single layer, N = 1, provided T < T,, I ,  for p = - VI + p:D with pzD = - 2 ~  the chemical 
potential at saturation for a square Ising lattice. The non-local density functional 
approach can describe two-dimensional phase coexistence for continum models in the 
limit where L + 0 [20,41]. The same theory yields an excellent description of the density 
profile of liquids confined in narrow cylindrical pores [42]-see figure 5 .  It reproduces 
all the structure associated with packing effects that is found in simulation [43] of the 
same model. Moreover, it gives an adequate description of the one-dimensional fluid 
behaviour expected when the radius R, + 0 [25]. 

Note that the simulation results [22,25,43] provide evidence for sharp condensation 
transitions, even in narrow cylinders. At first sight this is surprising. Since the geometry 
is equivalent to that of an infinite strip, true phase transitions cannot occur for T > 0. 
Any first-order transition must be rounded by finite-size effects [44]. A crude estimate 
[14] shows that the rounding in Ap is on the scale exp(-(R,/a,,)*), where o L ~  is a 
molecular diameter. Thus even for R, = 3 q J  the transition appears to be very sharp. 
Another consequence of the finite cross-sectional area of an interface in a cylinder should 
be the occurrence, along the axis, of a series of alternating domains [44] of the two 
‘quasi’-coexisting phases rather than a single domain of each. A series of ten different 
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FigureS. Radial density profilesp* = p(R)a t ,  for coexistingphases of a Lennard-Jones fluid 
in cylindrical pores of different radii R: = R,/a,,. The potential parameters are chosen to 
model argon at a solid COz substrate. In each case the oscillatory profiles correspond to 
‘liquid’. Full curves denote simulation results [43] and the dotted curves denote results of 
density functional calculations. T/Tc ,x  = 0.61. Note the variation of the central density p ( 0 )  
as R, is decreased. The relative pressure at which condensation occurs is given for each 
radius-see [42]. 

‘gas’ and ‘liquid’ domains has been observed in molecular dynamics simulations with 
very long pore lengths [24,38]. 

Returning to slits, where true phase transitions do occur, a scaling argument [45] 
predicts that in the limit L+ CQ the critical point shift ATc(L)  (TC,= - Tc,L)/Tc3z - 
L-””, where I, = 0.63 is the bulk (three-dimensional) correlation length exponent. The 
growth of droplets is determined by bulk critical fluctuations until the droplet size is 
comparable with the smallest dimension of the system, i.e. at Tc,L, 
gb - ( TC,= - T)-” - L. The scaling prediction has been confirmed in Monte Carlo simu- 
lations of Ising lattices with free boundaries [46]. For small values of L ,  AT,(L) varies 
roughly as 1/L [26]. Capillary criticality is of special interest since it corresponds to the 
two-dimensional Ising universality class. At T = Tc,L the correlation length E,, that 
measures the range of fluctuations in density can diverge parallel to the walls of the slit 
but not normal to them. Thus, on a critical isotherm, such as that sketched in figure 2(b) ,  
the adsorption should take the form II‘ - TCl - lp - pC/’/’ with critical exponent 6 = 15. 
This gives rise to a much faster divergence of (d r /ap)  than the mean-field result which 
has 6 = 3. Note that in three dimensions 6 = 4.81. Moreover, the jump in adsorption 
should vanish as AI- - (Tc,L - T)p with order parameter exponent = 8 ,  rather than 
with the mean-field value p = i or the three-dimensional value p = 0.32. To the best of 
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coexistence 

P 

Figure 6. A schematic phase diagram for a fluid exhibiting a first-order wetting transition at 
T,,. The prewetting line, where thin and thick films coexist, meets the bulk gas-liquid 
coexistence curve pSat(T) tangentially at T,. In the confined system the bulk coexistence 
curve is shifted to p < psd, (broken curve) and a triple point occurs where this line crosses 
the prewetting line. Note that the prewetting critical temperature T,,, is distinct from the 
capillary critical temperature Tc.L. 

our knowledge such predictions have not been tested in simulations although the two- 
dimensional character of the somewhat analogoussurface ( prewetting) critical point has 
been confirmed [47] in extensive Monte Carlo calculations for a lattice gas model. 

5. Surface phase transitions in pores: prewetting and layering 

Capillary condensation is not the only transition that can occur in pores. Confining a 
fluid precludes the roughening and wetting transitions [18, 191 that take place at the 
interface between two semi-infinite bulk phases. The wetting transition, for example, is 
associated with the growth of a macroscopic film, t-  =, of a-phase at the interface 
between a substrate (or spectator phase) and the bulk p-phase as T is increased 
towards T,, the wetting transition temperature, along the bulk coexistence curve-see 
figure 6. For T 2 T, complete wetting occurs and ywp = ywa + ynp. If the fluid is con- 
fined within a slit or cylinder, films of macroscopic thickness cannot develop. However, 
those surface transitions which occur out of bulk coexistence, ,U < pSat, for a semi- 
infinite system ( L  = =) are not precluded since these do not require thickness f +  m. 

Examples of such transitions are prewetting and layering [18]. The former is associ- 
ated with weak substrates where E, 

If the wetting transition, for L = =, is first order so that t ,  o r r ,  jumps discontinuously 
from a microscopic to a macroscopic value at T = T,, a line of first-order prewetting or 
thin-thick transitions [48,49] extends away from ,usat( T )  as shown in figure 6. Prewetting 
is characterized by a single discontinuous jump Al- in the adsorption for ,U slightly less 
than psat and T, < T < T,,,. For T 2 T,, A r  is very large, corresponding to several 
adsorbed layers, but at the prewetting critical point T,,, AI- vanishes, since there is no 
longer any distinction between thin and thick adsorbed films. When L (or R,) is large, 

E ,  whereas the latter occurs when E ,  % E .  
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Thin Figure 7. The density (occupancy) profiles pi for the triple- 
point state of a lattice gas model. These Monte Carlo results 
[21] are for a slit with N = 61 layers. T/TC,= = 0.588. Only 
the first ten layers near one wall are shown. Representative 
errors bars are indicated. ‘ 1  2 3 L  5 6  7 8 9 1 0  

but finite, prewetting will still occur, at much the same undersaturation ApPw as before, 
but will now be in competition with capillary condensation. Confinement shifts the bulk 
coexistence curve by an amount Ap - 1/L for large L and lowers the bulk critical 
temperature to Tc,L (see figure 6). Thus prewetting between stable phases will not be 
observed [50] unless Ap < A,upw. This condition requires large pores since the under- 
saturation Appw, even at Tpwc, is only a few per cent [21, 261. The prewetting and 
condensation lines intersect in a triple point; the three coexisting fluid phases are thin 
and thick adsorbed films plus a dense ‘liquid’ that fills the pore. An example I211 of such 
a state is shown in figure 7 for a lattice gas model. Similar results are obtained from 
density functional calculations for continuum fluids in slits and cylinders [12, 501. By 
varying the pore size a line of triple points, as well as lines of capillary and prewetting 
critical points, emerge and the resulting phase diagram, plotted in terms of (p ,  T ,  l / L ) ,  
is predicted to be rather rich [26, 501. Thermodynamic arguments given in I11 explain 
why three fluid phases can coexist out of bulk coexistence. The surface tension term 
2ydA in (2) accounts for the thin-thick coexistence while the solvation force term 
-Afd L accounts for capillary condensation. 

While prewetting has not been observed in any real experiment, discrete layering 
transitions, whereby the adsorption jumps discontinuously from r,, to r,, by an amount 
corresponding to a single new layer, have been found in many experiments for rare gases 
or small molecules adsorbed on graphite. For example, as many as eight first-order 
layering transitions have been measured for argon on graphite along isotherms just 
below the bulk triple point [51, 521. As p + psar it becomes increasingly difficult to 
discern the transitions because (i) they occur at closely spaced values pn and (ii) the 
possibility of capillary condensation occurring on powder substrates, such as exfoliated 
graphite, arises. Indeed the higher-order layering transitions compete with condensation 
in much the same way as prewetting does. Calculations [26] for lattice models using 
larger values of E ,  than those which yield prewetting show that while the location p,, of 
the layering transitions is not affected strongly by confinement, only six stable transitions 
survive before condensation occurs in slits with 100 layers. Triple points can occur where 
capillary condensed ‘liquid’ coexists with films of n and n + 1 adsorbed layers. Layering 
transitions competing with condensation have also been investigated for continuum 
fluids confined in cylinders [53, 661. Although the finite-size rounding of layering and 



Fluids adsorbed in narrow pores 9003 

prewetting is of a somewhat different character [14] from that of condensation, both 
should persist as very sharp transitions even in narrow cylindrical pores. Finally, it should 
be emphasized that while the critical points of layering or prewetting transitions are 
believed to lie in the same universality class as that of the capillary condensation critical 
point discussed earlier, these surface critical points are quite distinct from the shifted 
bulk critical point. 

6. Concluding remarks and relevance for experiment 

As emphasized in the introduction, this article has concentrated on the equilibrium 
properties of simple, one-component fluids confined in highly idealized pores. Theory 
and simulation have made striking advances during the last six or seven years leading to 
predictions of novel phase diagramst and of complex microscopic structure for confined 
fluids. Having established some fundamental understanding of what type ofphenomena 
might be expected to occur in pores, the time is probably right for detailed simulations 
using more realistic model potentials. These would provide more information about 
capillary freezing [8,9] and dynamical properties [5,6]. Extending theory and simulation 
to describe binary mixtures in pores is relatively straightforward but only a few studies 
have been reported [37, 38, 541. The new ingredient is the existence of preferential 
adsorption of one species with respect to another arising from differences in substrate- 
fluid attraction and from the difference in size of the fluid molecules. The composition 
of a fluid in a narrow pore can be significantly different from that in bulk and this may 
have implications for separation processes. 

Direct comparison of theory and experiment is not straightforward. Ideal pores with 
the relevant dimensions are not easy to come by. Studies based on liquids between 
crossed mica cylinders provide some of the more relevant results. Fisher and Israelachvili 
[63] tested the validity of the Kelvin equation by allowing cyclohexane to condense 
between the two cylinders which were then separated until the liquid bridge became 
unstable. The maximum value of the separation determines the mean radius of curvature 
of the bridging neck for a given pip,,,. For this system, which has a non-zero contact 
angle 8 - 6", they conclude that the Kelvin equation (employing the planar liquid-gas 
tension) remains accurate down to separations -80 A,  or 16 molecular diameters. This 
result is in keeping with the theoretical estimates described earlier. Later Christenson 
and co-workers investigated the spontaneous phase separation of a binary liquid mixture. 
For a sparingly soluble liquid solute the analogue of the Kelvin equation for the activity 
a at which separation occurs is In a = -2ymp cos 8/kBTLp,  where ylyp is the tension 
between the pure a-phase and the dilute solution p, 8 is the corresponding contact angle 
with the substrate and p m  is the number density of pure a [28]. Their most recent study 
[64] considers non-polar liquids containing water held between the mica cylinders. The 
two surfaces are allowed to approach each other and the separation at which spontaneous 
phase separation occurs is measured as a function of the activity of the dissolved species 
(water). This process is signalled by an inward jump of the surfaces into contact. The 

T In this article we considered fluids confined between identical parallel walls. When the two walls exert 
different (competitive) surface fields the phase equilibria of the confined fluid can be very different [60] from 
that for equal fields. In particular, if the surface fields and temperature are such that the fluid would wet one 
wall but dry the other, there can be no phase coexistence for finite wall separation L ;  the critical point shift is 
of a very different character from that described in section 4 ,  being driven by wetting behaviour [60].  
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distance at which the jump occurs is independent of the spring constant of the surface 
force apparatus [64]. In these measurements, at high water activity, the solvation force 
is very weak at large separations but the spontaneous separation results in a very large 
attraction. At water activities below 0.75 [65] an oscillatory solvation force is present 
until spontaneous phase separation occurs, again leading to a sudden attraction. By 
plotting the separation distance against the activity, the analogue of the Kelvin equation 
can be tested. There is qualitative agreement with theory for separations between about 
40 and 130 A for octamethylcyclotetrasiloxane (OMCTS) and natural potassium mica, 
corresponding to activities in the range 0.8 to 0.95. For larger activities the condensing 
water bridges are large and their formation depends on kinetic and diffusion effects. 
Christenson eta1 [64] argue that their data are the most direct experimental observations 
of phase transitions in very thin films and they interpret their results as direct evidence 
for a first-order phase transition of the confined liquid. They are careful to point out that 
the force that is measured when the surfaces jump together is notfp appropriate to the 
phase-separated (water) phase; the quantity that would be obtained from a theory of 
the first-order transition is the jump in force Af = f a  - f p .  The measured attractive force 
results from the formation of a liquid-liquid interface of negative curvature which pulls 
the surfaces together. Nevertheless, the technique does appear to provide a powerful 
means of locating shifted bulk transitions. Some hysteresis with respect to increasing,’ 
decreasing the separation of the cylinders is observed, reflecting possible metastabilities 
of the transition. 

Do the results obtained for single pores have any relevance for gas adsorption on 
real porous solids containing a complex network of interconnected pores of various 
shapes and sizes? This is really a separate topic. For example, capillary condensation 
certainly occurs in materials such as VYCOR and gives rise to hysteresis of the adsorption 
isotherms. Whether the measured hysteresis is due primarily to the existence of meta- 
stable states in a single pore (cf figures 2 and 3) or to pore blocking-i.e. evaporation 
of the capillary condensate, which should occur spontaneously during desorption, is 
obstructed by ‘liquid’ condensed in constrictions or ‘necks’-is still a matter for some 
debate. Recent calculations [55] for a model of Xe on VYCOR and comparison with 
experiment [56] support the view that pore blocking, arising from network effects, 
determines the shape of the hysteresis loops and is responsible for the form of desorption 
scanning curves, obtained by decreasing the pressure before saturation is reached. Much 
more theoretical effort is required in this area. While it has been shown, via a lattice gas 
calculation, that hysteresis in a single pore offinite length reflects the development of a 
meniscus [57], it is not easy to incorporate network effects at the microscopic level. 

The dependence of adsorption on temperature has been studied systematically for 
only a few cases. Isotherms for Xe on VYCOR [56], and for closely related systems, 
show hysteresis loops shrinking with increasing temperature and eventually disappearing 
at some temperature below TC,=. This is illustrated in figure 8. Ball and Evans [55] and 
Everett [58] have interpreted such behaviour as evidence for a capillary critical point 
whose location depends on the average pore size. Figure 9 shows the results of cal- 
culations [55] for a network model which assumes a Gaussian pore size distribution, with 
average cylinder radius R A  = 29.4 A and a standard deviation of 0.2 R A .  It is assumed 
there is no metastability for a single pore so that all the hysteresis is associated with 
network efects and these are treated in the same spirit as in the work of Mason [59]. The 
disappearance of the loops in these calculations reflects the decrease in the jump in A r  
at capillary condensation as criticality is approached-see section 4. Although there is 
rough agreement with the experimental results of figure 8 (the loop disappears at about 
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Figure8. Adsorption isotherms of Xe on VYCOR [56] .  Full circles denote adsorption; open 
circles denote desorption. TC,% = 289.7 K is the bulk critical temperature of Xe. At the 
highest temperature TIT,,, = 0.94 no hysteresis is observed. 
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Figure9. Adsorption isotherms calculated for the network model described in [55].  Tis given 
in arbitrary units. ( a )  T = 0.63Tc,,; ( b )  T = 0.70Tc,,; (c) T = 0.83Tc,,; ( d )  T = O.87Tc,,; ( e )  
T = O.94Tc,,. Note that the sharp kink on desorption is an artifact of the model; this would 
be rounded in a more realistic treatment. 

the same value of T/T,,,) there are also important discrepancies 1551. These might be 
attributed to the crudeness of the network model. Ideally the theoretician would like to 
have adsorption data for a material with uniform, preferably unconnected, pores of 
known radius, rather than ior the poorly characterized VYCOR or silica gels. This is a 
tall order! It remains to be seen whether suitable materials can be produced using 
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techniques such as electron beam boring or whether certain zeolite crystals would be 
good candidates. 
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